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A Computer-assisted Instruction Program

for Exercises on Finding Axioms*

by Adele Goldberg and Patrick Suppes

This paper describes an interactive computer-

assisted system for teaching elementary mathematical logic,

which was designed to handle formalizations of first-order

theories suitable for presentation in a computer-assisted

instruction (CAI) environment. The system provides tools

with which the user can develop and then study a nonlogical

axiomatic theory along whatever lines he specifies. These

tools include a proof-checking program that allows the user

to construct derivations by taking advantage of the

theorem-proving capabilities of the computer.

Results of preliminary investigations using this

computer-assisted teaching system in a manner designed to

give the student greater control over the organization of

his curriculum are summarized in Section 2, and Section 3

outlines initial studies on the uses of mechanical theorem

provers in teaching about proof construction.

* This research has been supported by the National
Science Foundation under Grant NSF GJ-443X2. We very much
appreciate the assistance of Stephen A. Weyer in preparing
this report for publication.
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1. Basic Instructional Capabilities

The instructional system is written in the LISP

programming language for a DEC PDP-10 computer at the CAI

Laboratory of the Institute for Mathematical Studies in the

Social Sciences (IMSSS), Stanford University. Figure 1, a

block diagram of the basic system, views the program as an

interpreter made up of two components. One, call it C, is

a set of inference rules and proof procedures used in

constructing derivations (DERIVE mode). It is defined in

Language A (AXIOMATIZE mode). With A, the user is able to

specify the vocabulary and axioms and to derive new rules

of inference from axioms and established theorems. The

names of the axioms, theorems and new rules, with

instructions on how to use these rules, are learned by A

`and added to C, which is further augmented by the basic

logical system. Specifically, this includes primitive

rules to support a formalization of first-order predicate

calculus with identity -- quantifier rules, the rule of

detachment (called "affirm the antecedent" and abbreviated

AA)p rules governing the identity relation, proper

substitution (PS) and replacement, and procedures to

construct conditional and indirect proofs (CP and IP).

Insert Figure 1 about here
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I
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INTERPRETER

for the

Send a
command

Generate
a line of
proof

COMMAND LANGUAGE Generate
command
schema

DERIVE mode

Construct proofs using
command language and
theorem-provers

o}EIpn

TUTORING mode

Advice and
comments

"INIT"

INIT mode

Problems specified by
the students at run time

PROBLEM mode

Present the problems
to the students

I

AXIOMATIZE mode

Specify the
axiomatic theory

E
Teacher

PRESTORED CURRICULUM

Derivation problems
and questions

Fig. 1. Block diagram 1::$ the inetructiohal system.



In the DERIVE mode, the interpreter takes on the

role of a proof checker to verify that each step of a proof

constructed by the user is a valid consequent of a set of

statements of the theory. In such an interactive system,

the user indicates a proof step by typing the name of a

rule in C. The rule may refer to several previous lines of

the proof and may include a reference to an occurrence of a

term in a previous line. A properly formulated rule is a

request to have the program generate a new line of the

proof. The proof checker examines the format and intended

application of each rule. If a rule is poorly formed, the

user receives a message that explains what error was

committed.

Figure 2 shows a simple example of a proof

constructed within the system. Any information typed by

the user is underlined; the rest is typed by the computer.

QIN

Insert Figure 2 about here

In the proof in Figure 2, the user typed WP to

indicate that he wanted to type a working premise. Derived

rule LC used in line (3) is a special case of the classical

sentential rule of simplification; we use it to infer the

left conjunct of a conjunction. The rule CP, for

conditional proof, is a request to generate a conditional

7
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PROVE (P->Q)->((P & R)->Q)

:WP (1) P-X1

:WP (2) P & R

:2LC (3)

:1AAAA (4) 0

:2.4CP (5) (P & R)-X1

:1.5CP (6) (P->0)->((P & R)->Q)

CORRECT...

Fig. 2. Sample proof (underlining indicates
student input).
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statement from a working premise and some line already in

the proof. The production of a line matching the problem

expression is not sufficient to guarantee that the user has

constructed a complete proof. Any working premises that

have been introduced must be discharged in proper order by

a conditional or indirect proof.

The proof checker can provide error messages for

the rules it learns from the user. The same analysis

routines that process rules and generate new lines of the

proof are also used to compute error messages. These

error-analysis procedurei generate explanations of how each

rule may be applied. The explanations include sample proof

steps which, if possible, reference lines already in the

user's proof. In this manner, the user can receive

immediate feedback to help him reexamine the structure of

the theory he himself has specified.

Sample recursive error messages for sentential

logic are shown in Figure 3. The mnemonic DC refers to the

principle of inference modus to` llens. Hopefully no single

student would ever make so many mistakes in a single

exercise.

....
Insert Figure 3 about here

Labeling the user as either a teacher or student is

6 9



PROVE (P)0))((NOT 0 ) NOT P) )NOT P)

WP (1) 12=29

:WP (2) NOT Q > NOT P

:WP (3)

0.1AA
LINE 3 MUST BE A CONDITIONAL

:122LA
LINE 2 MUST BE THE ANTECEDENT OF LINE i

:1:214 (4)

:2.2.2DC (5) NOT

:2.4.31P
LINE 2 WAS NOT THE LAST WORKING PREMISE INTRODUCED

:3c4.21P,
LINE 4 IS.NOT THE DENIAL OF LINE 2

:304.5Ip (6) NOT P

:§.2CP
LINE 5 IS NOT A WORKING PREMISE

ILECY (7) (NOT Q ) NOT P)) NOT P

:1,7CP (8) (P)Q))((NOT 0 ) NOT P) -)NOT P)

CORRECT...

Fig. 3. Sample error messages.



unnecessary. It is possible for the user to devise a

curriculum for teaching others about the axiomatic 'system

he has specified, so the user might be a teacher writing a

computer-assisted course or a student experimenting with

newly acquired skills in proof construction. Although the.

teacher may prescribe a curriculum, his student may

interrupt the flow of exercises to make up his own

exercises.

As shown in Figure 4, the student indicates his

intention to alter the curriculum by typing the instruction

INIT. He may avail himself of this .option to test any

ideas he has acquired about proof strategies or about the

provability of some expression. He may repeat do exercise

for practice, try more difficult derivations than those

given him or prove lemmas that would help make the

teacher-defined exercises easier to solve. He thus can

alter the curriculum to suit his indiiridual instructional

needs. In Figure 4 we see how a student derived a new rule

of inference from a lemma he has proved and then used the

rule and two theorems to complete the exercise given to

him. The two theorems are shown at the bottom of Figure 4.

Error messages computed for the derived rule have also been

included.

8
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Immio...0141111mOMIII.....NONswit=10isamItwonanbamelpOlussew

Insert Figure 4 about here

MwmimmoOIRPO.110...101.1.10041M61.

The student is not required to follow a particular

solution path in order to construct a valid derivation. He

is always free to explore within the bounds set by the

inference rules, to ask questions about rules and to try

any approaches he thinks are promising for finding a proof.

However, the degree of student control over the curriculum

can be changed at the teacher's discretion. By varying the

degree of freedom given the student, we will in time be

able systematically to test the comparative effectiveness

of student-controlled versus fixed-branching CAI schemes.

In the present version of the instructional system,

the teacher can block use of the /NIT command, especially

where consecutive experience with a set of exercises is

desirable, or the teacher can indicate in the curriculum

that a problem must be solved with or without the use of

certain rules. Once the student has completed a valid

solution, the proof checker chains through the sequence of

rules that entered into the derivation to determine whether

the student constructed the proof within restrictions

specified by the teacher.. If the student has not

constructed a solution within the required restrictions,

the proof checker will ask him to repeat the exercise.

9



DERIVE (NOT P)->(P -> Q)
:INIT

YOU CAN NOW REQUEST AN EXERCISE OR
DERIVE A NEW RULE OF INFERENCE.
TYPE FIN WHEN YOU ARE DONE.

:PROVE: j =1 g)->C(Q =kill:22 :2 B11

g g

0

P -> R

-) R)->(P -> R)

0) ->((0 -> R)-)(P -> R))

:WP (1) 1).

:WP (2)

(3)

:1,3AA (4)

:LA& (5)

:3.5CP (6)

:2 6CP (7) (0

:1.7CP (8) (P ->

CORRECT...
NAME:LIE

:RULE
NAME:HS
FROM:LEM

:FIN

Fig. 4. Use of the INIT instruction.

ri
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NOW REDO THE EXERCISE YOU INTERRUPTED

DERIVE (NOT P)>(13 > Q)

pS:TH2 ((NOT Q) )(NOT P))>(P ) d)
is (1) ((NOT Q) )(NOT P))>(P 7 Q)

PS agi P->(0 -> P)
::P :NOT, P

tsOtNOZ
(2). (NOT p)-)((NOT Q) -)(NOT P))

:1.2HS
HS REQUIRES 3 LINE NUMBERS

:WP (3) NOT P

:1.2.3HS
THE ANTECEDENT OF LINE 2 MUST BE
THE CONSEQUENT OF LINE 1

:2.1,3HS (4) P > Q

:3.4CP (5) (NOT P)>(P > Q)

CORRECT...

Fig. 4, continued.

at: 11
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In summary, the instructional system was designed

to increase the level of active participation by the

student. A student can specify a first-order theory and

build his own command language with which to construct

proofs. He can then (a) make up his own exercises, (b)

communicate with a proof checker to verify whether his

solutions are correct, (c) work on an exercise without

interference, i.e., he may try any solution path regardless

of whether it approaches a successful proof, and (d)

receive immediate feedback on errors. Furthermore, he can

ask about previously learned material and receive advice

and comments on his work which take into account only the

material that he knows, i.e., material that he was taught

or that he developed. This flexibility was made possible

only by developing a system that was not restricted to a

fixed curriculum or a fixed language for communicating with

the students. Consequently, the system can be adapted to

the instructional needs of a large class of users and a

wide range 'of possible curriculums.

2. The Firlding-Axiome pcercises

The possible uses for this system are varied. The

resources of the program allow the user to axiomatize the

theoretical structures of some elementary domain of

science. For example, a graduate student in logic is using

the program to study axiomatizations of eleglentary



geometry; another is using it to develop a curriculum for

the predicate calculus and elementary number theory.

A program like this is suitable for problem-solving

tasks of varying levels of complexity, such as the

Finding-Axioms Exercises, which are modeled after the

famous R. L. Moore method of instruction. The students

were either in an elementary course in logic at Stanford or

12-year-old seventh graders from a junior high school in

Palo Alto, California. A description of this task and the

results of actual classroom use of the instructional

program follow.

A Finding-Axioms Exercise consists of a list of

well-formed formulas of a formal theory. The student must

select at most N formulas from which the rest can be

derived and show that the selection is correct by carrying

out the derivations. The student is encouraged to

establish a definite order of the formulas to be proved so

that one derived formula can be effectively used in

deriving another.

For this exercise, the logical rules of inference

already discussed were made available to the student. The

only difference in format was the additional ability to

reference the formulas in each exercise by their numbered

position in the list. Each student was expected to infer

the syntax for a well-formed expression from the formulas

13

. 16



in the list.

At the time we introduced the Finding-Axioms

Exercises, the students had learned a quantifiex-free

version of first-order logic, some elementary algebra arui

some Boolean algebra. Their teacher was an earlier version

of the computer-assisted logic program in use at IMSSS

since 1964 (Suppes. and Binford, 1965; Suppes and Ihrke,

1970; Goldberg, 1971; Suppes, 1971). We could, thus assume

that the students were familiar with the operation of a

teletypewriter (the student's input device) and with the

manner in which proofs could be constructed on the

computer. The students were adept at taking advantage of

some of the more flexible features of the new instructional

system, namely, with (a) naming and renaming formulas to

find a suitable group to choose as the axioms, (b) making

up lemmas to decrease the number of steps in some of the

more complicated proofs, and (c) devising derivation

problems with premises to test the effect of adding one or

more axioms.

The four Finding-Axioms Exercises are shown in

Figure 5. The students' previous experience with an

axiomatization of the natural numbers made Exercise 1

conceptually easier and gave them an opportunity to adjust

to the features of the new instructional system. Most of

the college students completed all four exercises;



Exercise 4 was not given to the seventh graders because of

the level of difficulty of the substitutions required.

Insert Figure 5 about here

In Tables 1-4 we show

student for each exercise

Variation in the selection of

exercises, probably least in

the first exercise. However,

managed to use only nine

formulas used by each student

exercise.

...
the axioms selected by each

in the obvious matrix form.

axioms occurred in all four

the most trivial of the four,

even here one, Student 11,

axioms, Tables 5-8 show the

to prove the theorems in each

r
Insert Tables 1-8 about here.

In the case of Exercise 2, Students 12, 13 and 14,

the seventh graders, did not finish, and the axioms they

selected are not necessarily adequate--this is immediately

obvious in the case of Student 13. These three young

students did complete Exercise 3. The 11 college students,

i.e., Students 1-11, all selected one of two sets of

axioms; the choice was as evenly divided as possible with

an odd number of students. Axioms 4 and 5 are definitional

in character. By ordinary axiomatic standards the choice



Exercise 1. Natural Numbers

About 10 axioms seem to be needed.

1. X+1=Y+1 -> X=Y

2. NOT X+1=0

3. (NOT X=Y) -> (NOT X+1=Y+1)

4. X+0=X

5. NOT X+1=X

6. X+(Y+1)=(X+Y)+1

7. X+Y=Y+X

8. 0+X=X

9. Zx0 = 0

10. Z x(Y+1)=(Z x Y)+E

11. Z x Y =Y x Z

12. 0 x Z=0

13. Z x 1=Z

14. NOT 0=1

See what you can do.

Fig. 5. Finding-Axioms Exercises.

19
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Exercise 2. Order Properties

'Find 4 of the 8 statements that will serve as axioms. For
intuitive purposes, think of.P as greater than and Q as equal
to or greater than.

1.XPY&YPZ->XPZ
2. X P Y -> NOT Y P X

3. NOT X P X

4. X 0 Y -> NOT Y P X

5. NOT X P Y -> Y 0 X

6. X 0 Y OR Y 0 X

7.X0Y&Y0Z->X0Z
8. X O X

Fig. 5, continued.



Exercise 3. Lattices

Vhis exercise is close to the earlier work on Boolean algebra.
The operations are the Boolean operations and the relation Q
is likethe relation of subset. But there is no complementation.
We let stand for intersection, and V for union.

1.XQY &YQZ - >XQZ (Transitivity]

2.X0Y&YOX->X=Y [Antisymmetry]

3. X 0 X [Reflexive]

4. X Q Y -> X Y = X

5. X Y = X -> X 0 Y

6. X X = X [Idempotent]

7.XVX= X

8. X Y=YX [Commutative]

9.XVY=YVX
10. X (Y Z)=(X" Y)" Z [Associative]

11. X V (Y V Z)=(X V Y)V Z

12. X (X V Y)= X [Absorption]

1 3 . X V (X Y) =X

14.X0Y&X0Z-> X"Y = X"Z

15. X 0 Y -> X V Y=Y

16. X V Y = Y -> X 0Y

17. X Y Q X

18.X0XVY
10.X0Z&YOZ->XVYQZ

Fig. 5, continued.

3
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20.XQY&XQZ- XQY'. Z
'21.3C..YQXVY

22. X (X Y) = X Y

23. X (Y Z) 0Y

24.X..YOXVZ

25. X Q (Y Z) V X

Exercise 4. Betweenness

B(X,Y,z) means that Y is between X and Z on a line segment.
We still call it betweenness when X=Y or Y=Z. Find 5 of the
11 statements as axioms.

1. B(X,X,X)

2. B(X,Y,X) -> X=Y

3. B(X,Y,Z) -> B(Z,Y,X)

40 X=Y -> B(X,Y,Z)

5. B(X,Y,W) & B(Y,Z,W) -> B(X,Y,Z)

6. (NOT Y=Z & B(X,Y,Z) & B(Y,Z,W)) -> B(X,Y,W)

7. B(X,Y,Z) & B(X,W,Z) -> B(Y,W,Z) OR B(W,Y,Z)

8. B(X,Y,Z) & B(Y,X,Z) -> X=Y

9. (B(X,Y,Z) OR B(Y,Z,X)) OR B(Z,X,Y)

10. ((NOT Y=Z) & B(X,Y,Z) & B(Y,Z,W)) -> B(X,Z,W)

11. B(X,Y,X) -> B(Z,Y,X)

Fig. 5, continued.

1.9
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THEOREMS

Student Formula
no. no.

TABLE 5,

Proved using
formulas no.

EXERCISE 1

Student
no.

Formula
no.

Proved using
formulas no.

1 3 1 8 14 4,5

8 4,7 8 4,7

12 9,11 12 9,11

14 5,12 3 1

2 1 3 9 8 4,7

8 4,7 14 5,8

12 9,11 13 8,9,10

14 4,5 12 9,11

3 13 4,7,10,11,12 10 1 3

8 4,7 8 4,7

9 11,12 12 9,11

3 1 14 4,5

4 8 4,7 .11** 8 4,7

12 9,11 12 9,11

14 4,5,7 13 8,9,10

3 1 3 10
14 2,8

5 4 7,8 12 9 11,12

12 9,11 8 4,7

3 1 3 1

14 4,5 14 2,4,5

6 3 1 13 8 4,7

8 4,7 12 9,11

14 5,8 14 4,5

12 9,11 3 1

7 8 4,7 14 4 7,8

3 1 12 9,11

12 9,11 3 4,7,8,9,10

14 5,7,8 14 4,5



THEOREMS

Student Formula
no. no,

TABLE 6.

Proved using
formulas no.

EXERCISE 2

Student
no.

Formula
no,

Proved using
formulas no.

1 1 2,4,5,7 8 8 6

3 2 3 4,8
6 2,5 2 L1,6
8 4,5 1 2,4,5,6,7

8 6 2 L1,L4,4
3 4,6 3 2

2 4,6 8 3,5
1 2,4,5,7 1 L3,4,5,7

3 6 2,5 10 1 2,4,5,7
3 2 3 2

8 6 6 2,5

1 2,4,5,7 8 3,5

3 2 11 8 6

8 3,5 3 4,8
6 2,5 2 L1,4,6
1 2,4,5,7 1 L3,4,5,7

5 8 6 12 3 2

3 4 8 5,3
1 4,5,6,7 6*

2 1,3 7*

2 4,6 13 3 4,8
1 2,4,5 2 1,3
3 2 5*

8 3,5 7*

7 3 2 14. 8 3,5
8 3,5 1*

6 3,5 2 1,3
1 2,4,5,7 4*



TABLE 7. EXERCISE 3

THEOREMS

Student Formula Proved using Student Formula Proved using
no. no. formula no. no, no. formula no.

i 15 4,8,9,13 8 2 9,15
5 8,9,13,16 19 L1,11,15
1 4,5,10 20 L2,4,10
2 9,15 3 L3
3 5,6 7 3,15
7 3,15 6 3,4
18 7,11,16 22 6,10
12 4,18 17 5,8,22
14 4 18 7,11,16
22 6,10 12 4,18
17 5,8,22 13 9,15,17
19 11,15,16 21 9,11,13,16
20 4,5,8,10 14 4
21 9,11,13,16 23 5,6,8,10
23 5,6,8,10 24 5,8,10,12
24 9,11,13,16 25 5,9,12
25 5,9,12 1 4,5,10

1 4,5,10 9 2 4,8
2 4,8 3 9,13,25
6 12,13 6 3,4
3 5,6 7 6,13
16 5,12 5 6,8,13,25
15 4,9,8,13 14 4
7 3,15 15 4,8,9,13
14 4 16 6,9,25
17 13,16 17 6,13,25
18 5,12 18 6,9,25
19 11,15,16 19 11,15,18
20 4,5,8,10 20 4,5,8,10
21 1,17,18 12 4,6,9,25
22 6,10 21 5,9,10,12
23 8,10,17 22 4,8,17
24 1,17,18 23 8,10,17
25 9,18 24 10,12,23



TABLE 7, continued.

3 15 4,8,9,13 10 1 4,5,10
16 5,12 2 4,8
6 12,13 6 8,12,13
7 12,13 7 3,15
2 4,8 14 4

14 4 17 5,6,8,10
24 9,11,13,16 18 7,11,16
17 7,24 19 11,15,16
18 6,24 20 4,5,8,10
25 6,9,24 21 1,17,18
23 24,10,8,7 22 10,6
22 6,10 23 8,10,17
21 24 24 1,17,18

1 5,11,12,15 25 9,18
3 7,16 15 4,8,9,13

19 11,15,16 16 5,12
20 4,5,10 3 5,6

4 1 4,5,10 11 6 12,13
14 4 7 12,13
2 4,8 3 5,6

20 4,5,8,10 2 4,8
19 11,15,16 14 4
15 4,8,9,13 22 6,10
6 12,13 23 5,6,8,10
3 5,6 17 5,6,8,10
7 3,15 18 5,12

18 7,11,16 15 4,9,13
17 5,6,8,10 16 5,12
21 5,9,10,12 25 7,9,11,16
22 6,10 24 5,8,10,12
23 5,6,8,10 21 5,9,10,12
24 11,13,16 19 11,15,16
25 7,9,11,16 20 4,5,10
16 5,12 1 4,5,10



TA3LE 7, continued.

5 2 4 12 22 6,10
14 4 14 4
25 9,18 16 5,12
5 8,17 3 5,6

16 18 2 3,4,6,8,14
12 4,18 1 4,5,10
13 9,15,17 18 7,11,16
23 8,10,17 19 10,11,15,16
20 4,5,10 7 3,15
19 11,12,16 20 4,5,10

1 4,8,23 17 5,6,8,10
3 13,25 21 1,17,18
4 12,15 23 8,10,17
3 5,6 25 9,18
6 3,4 4 5,12

22 6,10 13 9,15,17
7 3,12 24 1,17,18

6 16 5,12 13 6 3,4
4 12,15 2 4,6,8,10
3 5,6 7 3,15
7 10,15 1 4,5,10
1 11,15,16 14 4,8,10
2 9,15 16 5,12

17 5,6,8,10 20 4,5,10
13 9,15,17 17 9,12,13,16
14 4 18 5,12
18 5,12 19 4,11,15,16
19 11,15,16 22 4,8,17
20 4,5,10 3 5,12,13
24 9,11,13,16 15 4,8,9,13
21 24 21 1,16,17,18
22 4,8,17 23 8,10,17
23 8,10,17 24*
25 9,18 25*

26

29

3



TABLE 7,

7

continued.

3 5,12,13
6 3,4

25 5,9,12
1 4,5,10

24 8,10,12
14 4
2 4,8
18 5,12
15 4,8,9,13
16 5,12
7 15

17 9,11,16
19 11,15,16
20 4,5,10 .

21 1,17,18
22. 6,10
23 8,10,17

14

.

,

7

1

14
2

16
17
18
15
6
3
19

26
22
21

23
24*
25*

3,15
4,5,10
4
4,8,10'
5,12
3,9,13,16
5,12
4,8,9,13,17
7,12
5,12,13
4,9,10,11,

12,15,16
4,5,10
6,10
1,17,18
8,10,17

.

7



'THEOREMS

Student Formula
no. no.

TABLE 8.

Proved using
formulas no.

EXERCISE.4

Student
no.

Formula
no.

Proved using
formulas no.

2 1 9 8. 1 4
2 1,3,5,8 2 3,4,8
4 2,3,9 11 2,3,4
10 3,6 6 L5,L4,3,8,9
11 2,3,4 10 L1 ,L2,3,8,9
7 2,3,4,6,9,10 7*

1 9 9 1 9
8 2,5 8 2,5
4 1,2,3,9 11 2,3,9

11 2,3,4 4 1,3,11
6 3,10 7 L1,3,8,9,10
'7 L2,2,3,9,10 6 L1,3,5,8,9,10

4 4 2,3,9 10 1 9

1 4 4 Li
11 2,3,4 8 2,5
8 2,5 11 2,3,4
6 3,10 7 L3,L4,L5,3,5,9
7 2,3,4,5,9,10 10 L1,2,3,5,6,9

6 1 9 11 4 2,3,9
11 L1,2,3 1 4
4 1,3,11 11 2,3,4
6 3,10 8 2,5
8 2,5 6 3,10
7 L1,3,8,9,10 7*

28

1



of Formulas 2 and 7 as the remaining axioms is somewhat

surprising; certainly they are not a choice that would be

found in any text dealing with these elementary order

properties.

Exercise 3 on lattices produced the greatest

variety of axioms.. Seven students of the 14 used the same

set, but the remaining seven students produced five

additional sets of axioms. Student 8 introduced the

following three lemmas to shorten his proofs.

Lemma 1: (NOT X Q Y)-> (NOT X V Y = Y)

Lemma 2: (NOT X .43 Y)-> (NOT X Y = X)

Lemma 3: (X=Y)-> (X Q Y) & (Y Q X)

Because of its greater difficulty, Exercise 4 was

completed by only six of the 11 college students. (The

college course required completion of this exercise only by

those students who wanted the highest grade.)

Students 8 and 11 selected adequate axioms, but did not

complete the proofs. Various students introduced and used

the following five lemmas.

Lemma 1: B(X,X,Y)

Lemma 2: B(X Y,Y)

Lemma 3: NOT (B(Y,W,Z) OR B(W,Y,Z))->
NOT B(Y,W,Z)

Lemma 4: NOT B(Z,Y,X)-> NOT B(X,Y,Z)

Lemma 5: NOT B(Z,Y,W)-> NOT Z=Y

We have looked at the data on the order in which

29
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formulas that were not selected as axioms were proved by

each student. We also have looked at the sequence of

rejection of formulas as possible axioms, but the data are

too elaborate to reproduce here, and thus we have

restricted ourselves to points that seem of particular

interest.

In conversations with the students we found that

they experienced some difficulty in crossing over from one

exercise to another when identical symbols were used

(namely, 0). There was also an initial desire on the part

of the seventh graders to use theorems from one exercise

for proving theorems in another. This confusion in

distinguishing between the distinct theories might stem'

from the CA/ environment in which they had been studying

earlier, one in which the curriculum was designed so, that

each axiom introduced and each theorem proved were always

available for use in subsequent proofs.

To find a suitable set of axioms for a given

exercise, the students had to experiment with different

combinations of the formulas, perhaps trying to construct

proofs for formulas already designated as axioms. In doing

this, they sometimes made an error that we term "cycling"- -

proving Formula A from B designated as an axiom, and then

proving B from the already established Theorem A. A

trial-and-erior heuristic for choosing axioms was developed

I



by the students from this cycling problem: if the proofs

for two formulas depend on one another, assume that one

should be an axiom. We offered another heuristic: to be

able to prove things about the relationships between the

variables, pick as axioms those formulas that define the

relations in terms of one another, not just singularly.

The longest proofs were of formulas (7) and (10) of

Exercise 4. Each of the 11 college students attempted to

find a proof of Formula (7). The mean length of' these

proofs was 45 lines, with the shortest, which used three

lemmas, being 39 lines, and the longest being 77 lines

without using any lemmas. Only three students proved

Formula (10), with proofs of 17, 32 and 43 lines. The

rather elegant shortest proof of 17 lines is shown as

Figure 6.

Insert Figure 6 about here

The general response of the college students to

these exercises was surprisingly positive. Even though the

Finding-AxiomS Exercises were considerably harder than the

earlier exercises in the course, all of the students

expressed a clear preference for the Finding-Axioms

Exercises, because of the apparent greater interest in the

exploratory search for axioms as opposed to straight

31
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:PROVE: 12
PROVE (((NOT YANZ)& B(X,Y,Z))& B(Y,Z,W))-> B(X,Z,W)

:WP (1) ((NOT Y=Z)& B(X.Y.Z1)& B(Y.Z.W)

:1RC (2) B(Y,Z,W)

:AKA B(X,Y,Z)-> B(Z,Y,X)
xkLY
Y::Z
Z::W (3) B(Y,Z,W)-> B(W,Z,Y)

:112AA (4) B(W,Z,Y)

:iic (5) (NOT Yorz)s, B(X,Y,Z)

:AM (6) B(X,Y,Z)

:ha B(X,Y,Z)-> B(Z,Y,X)
X::X
Y ::Y
Z::Z (7) B(X,Y,Z)-> B(Z,Y,X)

37,6AA (8) B(z,Y,x)

(9) NOT Y=Z

t9CE1 (10) NOT Z=Y

:AXI3 (((NOT Y=Z)& B(X,Y,Z))& B(Y,Z,W))-> B(X,Y,W)
W::X
X::W
Y::Z
Z::Y (11) (((NOT Z=Y)& B(W,Z,Y))& B(Z,Y,X))-> B(W,Z,X)

:10,4FC (12) (NOT Z=Y)& B(W,Z,Y)

:t2.8FC (13) ((NOT Z=Y)& B(W,Z,Y))& B(Z,Y,X)

Fig. 6. Shortest student proof for formula (10), Exercise 4.
AXA: (((NOT X=Y)& B(Z,X,Y))& B(X,Y,W))->B(Z,X,W)
AXB: B(X,Y,Z)-> B(Z,Y,X).



:11.13AA (14) B(W,Z,X)

AXB B(X,Y,Z)-> B(Z,Y,X)
X::W
Y::Z
Z::X (15) B(W,Z,X)-> B(X,Z,W)

:11:14A6 (16) B(X,Z,W)

:1.16CP (17) (((NOT YlitZ)& B(X,Y,Z))& B(Y,Z,W))-> B(X,Z,W)

CORRECT...

Fig. 6, continued.

33.
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derivations from given axioms or premises.

The reaction of the 12-year-old students was rather

different. They had had extensive training in proving

theorems from given axioms, and they felt uneasy at not

knowing immediately where to begin, or if once they

started, whether their initial subset of axioms was

actually adequate for what they wanted to prove. The

currect revision of the course consequently includes

counterexamples and very elementaiy Finding-Axioms

Exercises almost from the beginning.

3. Theorem Provers for Instructional Use

The reader might question the instructional worth

of having a student prove complex theorems within the

framework of a proof checker which, as so far illustrated,

expects the, user to construct rigorous proofs. Aa

discussed in Section 2, the limitation of the program for

teaching mathematics is just this requirement that the

student construct an explicit formal proof for every

theorem. The routine steps of more advanced mathematical

work must be compressed and eliminated from the student's

explicit focus of concern in order to provide adequate time

to concentrate on the crucial conceptual steps in a given

proof.

A significant contribution of the system to the

development of more advanced mathematics courses in a CA/

34
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environment is the use of theorem provers for instructional

'purposes. With theorem provers, the student can instruct

the program to move from one point to another in the proof

without explicitly carrying out the mediating steps. The

intention is that the skipped steps be modest and of the

right level of difficulty for mechanical theorem provers of

a noninteractive nature. An example is repeated use of the

commutative and associative laws in a fashion that is

common in elementary algebraic arguments.

Using the instructional system as

have been able to study possiblewe

theorem provers can

mathematically valid

play

proofs

operation for the use of

generalized interchange

in the

a research tool,

roles mechanical

construction of

by the student. As modes of

theorem provers, we introduced

laws and instantiation rules for

each axiom and proved theorem, as well as an instruction

called SHOW. For example, whenever a new expression in the

form

true

it,

of an identity or biconditional is established as a

statement of a given theory, and a name is assigned to

the program is capable of performing both the

substitution and replacement rules in one step.

The automatic generalization rule for formulas in

the form of a conditional represents a definite savings in

the number of steps required to complete a proof, as

illustrated in Figure 7 by the derivation of line (7) from



(4) and Theorem A, line (8) from (5) and Theorem A, and

line (9) from (6), (7), (8), and Axiom TRA, The proof

depends directly on one previous theorem and one axiom,

which are shown at the bottom of the figure and which are

part of a system of constructive plane geometry. The user

simply references the name of the formula and an ordered

list of proof lines whose conjunction is a substitution

instance of the antecedent of the formula. The program can

then generate the corresponding instance of the consequent.

If substitutable variables occurring in the consequent do

not occur in the antecedent, the program will ask the

student to complete the desired substitution. The ability

to derive new inference rules extends this instantiation

rule in enabling the student to detach from a theorem a

formula that would otherwise only be obtainable by

iterative application of modus ponens on an instance of

that theorem.

1111111111111111.110111110

Insert Figure 7 about here

1.114111100111.41MOMOMPOINE101iONDO1011.

Our efforts to interface the instructional system

with the theorem-proving program of Allen and Luckham

(1970) have been moderately successful. Basically, our

idea is to let the student type a line into the proof,

thereby claiming that it is a valid inference from the work

36
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PROVE (((NOT Y=Z)& B(X,Y,Z))& N(Y,Z,W)).' B(X,Z,N)

'SNP (1) ((NOT XMZ)& I N(XsYsZ))& B(Y.Z00

MC (2) (NOT YmmZ)& B(X,Y,Z)

42LC (3) NOT Y=Z

:2E2 (4) 13(x,y,z)

Ing (5) B(Y,Z,W)

:3CE1 (6) NOT Z=Y

LAiRA (7) B(Z,.Y,X)

LIM (8) B(W,Z,Y)

s6.8.7TRA
(8) .13(W,Z,E)

s9TEA (10) B(X,Z,W)

sloocp (11) (((NOT Yia)se B(x,y,z))&.B(Y,z,w))-> B(X,Z,W)

CORRECT...

Fig. 7. A proof using general substitution rules..
Theorem As B(X,Y.Z)->(B(Z,Y1X)
Axiom TRA: (((NOT X=Y)& B(W,X,Y))& (B(X,Y,Z))->B(W,X,Z)

.37
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he has already done. He then calls on the theorem prover

to verify his claim. The student also must indicate which

lines already in the proof and what instances of axioms and

theorems he thinks should enter into the theorem prover's

computations. Formula (10) from the fourth FindingAxioms

Exercise is presented as an example of using the SHOW rule

(Figure 8). The SHOW rule, together with those discussed

above, were used to eliminate ten lines from the minimum

student proof shown in Figure 6..0iWII
Insert Figure 8 about here

a=ftwees.ma
A second and closely related activity in which

theorem provers are useful is that of monitoring the

student's activity while he is in the process of searching

for a proof and then giving him hints of how he may

complete the proof he has begun. At least in elementary

domains of mathematics this role of a theorem prover has

already been implemented as an instruction called HELP. A

heuristically based theorem prover was designed to perform

the work the student is expected to do, i.e., it constructs

proofs in the elementary theory of Abelian groups. By

taking the steps of the student's partial or erroneous work

into account when searching for a solution, the theorem

prover can compute various ways to complete the student's



PROVE (((NOT YsliZ)& B(X,Y,Z))& B(Y,Z,W))-> B(X,Z,W)

(1) ((NOT !ga).& B(X.Y.Z))61 B(Y.Z.W)

:1RC (2) B(Y,Z,W)

:2AXB (3) B(W,Z,Y)

:SHOW (4) ((NOT ,ZgY)& B(W.Z.Y)l& B(ZatX)
FROM LINES OF THE DERIVATION?
::141
FROM AXIOMS OR THEOREMS?

B(X,Y,Z)-> B(Z,Y,X)
X:*
Y: :Y
Z::Z

OK? x
LINE 4 IS OK

IMP (5) B(W,Z,X)

:IAEA (6) B(X,Z,W)

0_1602 (7) (((NoT yia)s, B(X,Y,Z))& B(Y,Z,W))-> B(X,Z,W)

CORRECT...

Fig. 8. Proof of Formula (10), Exercise 4, using
the SHOW instruction.
AXA: (((NOT X=Y)& B(Z,X,Y))& B(X,Y,W))-> B(Z,X,W)
AXB: B(X,Y,Z)-> H(Z,Y,X)



task. Prom this information, the instructional system can
'generate a tutorial dialogue aimed at helping the student
construct a successful proof. The details ,of using a

theorem prover as a proof analyzer to help a student
continue his work is dealt with elsewhere (Goldberg,

forthcoming).

4p1

1

I

3

fl

3



I

List oS Refogences

Allen, J., & Luckham, D. An interactive theorem-proving program.

In B. Meltzer & D. Michie (Eds.), Machine Intelligence 5.

New York: American Elsevier, 1970.

Goldberg, A. A generalized instructional system for teaching
elementary mathematical logic. Technical Report No. 179,
October 11, 1 9 71, Stanford University, Institute for

Mathematical Studies in the Social Sciences.
Goldberg, A. Computer-assisted instruction: The application of

theorem-proving to adaptive response analysis. Doctoral

dissertation, University of Chicago, Chicago, Illinois,
forthcoming.

Suppes, P. Computer-assisted instruction at Stanford. Technical

Report No. 174, May 19, 1971, Stanford University, Insti-
tute for Mathematical Studies in the Social Sciences.

Suppes, P., & Binford, F. Experimental teaching of mathematical

logic in the elementary school. The Arithmetic Teacher,
1965, 12, 187-195.

Suppes, P., & Ihrke, C. Accelerated program in elementary-school

mathematics--the fourth year. Psychology in the schools,
1970, 7, 111-126.

la
44-



(Continued from Inside fret eine)

96 R, C, Atkinson, J. W. Branford, and R. M. ShifMn, iltd11.110Cais models for mini) with applications to a continuous presentation task,
April 13, 1966. U. math. Psyehol., 1967, 4, 277-300 ).

97 P. Suppes and E, Crothers. Some remarks on stimulus-reopens theories of language learning. June 12,1966.
98 Eljork. All-or-none subprocesses In the Inning of complex sequences. (.1; 1968,1,182-195).
99 E, Gammon. The statistical determination of Linguistic units. tlaly_1,1966.

100 P. Suppes, L. Hyman, and M. Janin. Liners siructsrermoditis response and-lattncianinrininie In sriticrnstic. In J. P. Hill (ed.),
Minnesota Symposia on Child Psychology. Mirmeap011s0111tha 1967. Pp. 160-200).

101 J. L. Young. Effects of intervals between nelnfacenents and vet trials In paired-assoclate learning. August 1,.1966.
102 H. A. Wilson. An Investigation of linguistic unit size In inesitore locesSes. August 3,1966.

103 J. T. Townsend, Choice behavior Ina cued-recognition task. August 8,1966.
104 W. H, Batchelder. A mathematical analysis of multl-level venal turning. August 9,1966.
105 H. A. Taylor. The observing response Ina cued psychophyslaal task. hook II). 1966.
106 R. A, Work . Leaning and short.torm retention of paired useclittes intention to specific sequences of intarpresentatIon.intwvals.

August II, 1966. .

107 R. C. Atkinson and R. M. Shlffrin. Some Torwirocess models for memory. September 30,1966.

108 P. Suppes and C. lake. Accelerated program In elernantaysdhool nethenetteethe third yew. January 30,1967.
109 P. Supper and I. Rosenthal-Hill. Concept fonratIon by kindergarten Wilton in le card - sorting task. February 27, 1967.
110 R. C. Atkinson and R. M. Shiffrle. Human memory: a proposed system and its centre( processes. Mach 21,1967.

111 Theodore S. Rodgers. Linguistic considerations in the design of the Stanford computer-based curriculum in initial reading. June I, 1967.
112 Jack M. Knutson, Spelling drills using a computer-insisted instructional system. June 30,1967.

I 13 R. C. Atkinson. Instruction In Initial reading under compeer control: the Stanford Protect. July 14,1967.
I 14 J. W. Branford, Jr. and R. C. Atkinson. Recall al mired-associates as a function of overt and covert rehearsal procedures. July 21, 1967,
115 J. H. Stelzer. Some results concerning subjective probability structures with semlordon. August 1,1967
116 D. E. Run:albeit. The effects of intarpresentation Intervals on perfament* Ina continuous palredmassooltte task. Augustil, 1967.
117 E. J, Fishman, L. Keller, and R. E. Atkinson. Massed vs. distributed practice In computerized spelling drills. AugustI8, 1967.
118 G. J. Green. An Investigation of some counting algorithm for simple addition problems. August 21, 1967.
1.19 H. A, Wilson and R. C. Atkinson, Computer-based Instruction In initial reading: a progress report on the Stanford Project. August 25, 1967,
120 F. S. Roberts and P. Suppers. Some problems in the geometry of visual perception. August 31, 1967. (Synthese, 1967; 17, 173 -201)
12 I D. Jamison. Bayesian decisions under total and partial ignorance. D. Jamison and J. Koalelecki. Subjective probabilities under total

uncertiinty. Sept:mew 4, 1967,
122 R. C. Atkinson. Computerized instruction and the leaning process. September 15, 1967.

123 W. K. Estes. Outline of a theory of punishment. October I, 1967.
124 T. 5, Rodgers, Measuring vocabulary difficulty: An analysis of Item variables in learning Russian - English and Japanese - English vocabulary

parts, Decerther18, 1967.
125 W, K. Estes. Reinforcement In human lewning. Demi* 20,.1967,

126 G. L. Wolford, D. L, Wessel, W, K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection

models. January 31,1968.
127 R. C. Atkinson and R. M, Shiffrin. Some speculations on storage and retrieval processes In long-term memory. February 2,1968.

128 John Holmgren. Visual detection with Imperfect recognition. March 29,1968.

129 Lucille B. Mtodnosky. The Frost's: and the Bender Gestalt as predictors of reading achievement. April 12,1968.

130 P. Suppes. Some theoretical models for mathemetics learning. April 15, 1968. (Jo'umal of Research and Development In Education,

1967, 1, 5-22) .

131 0, IS, alson. Learning and retention in a continuous recognition task. May 15, 1968.
132 Ruth Hanna Hartley, An investigation of list types and cues to facilitate Initial reading vocabulary acquisition. May 29, 1968.
133 P. Suppes. Stimulus - response theory of finite automata. June 19, 1968.

134 N. Molar and P. Suppes. Quantifier -fine axioms for constructive plane geometry. June 20, 1968. (In J. C. H. Gerretson and
F. Oat (Eds.), Compositlo Mathematics, Vol. 20. Groningen, The Netherlands: Wolter-Noordhoff, 1968. Pp. 143.152,)

135 W. K. Estes and D. P. Horst. Latency as a function of murals's, r response alternatives In paired-associate learning, July I, 1968.
136 M. SchlarRey and P. Suppes. High-order dimensions In concept Identiflution. July 2, 1968. (Psychom. Sot., 1968, 2, 141-142)
137 R. M. Shiffrin. Search and retrieval processes in long-term memory. August 15, 1968.
138 R. D. Freund, 0. R. Loftus, and R.C. Atkinson, Applications of multlprocess models he memory to continuous recognition tasks.

December 18, 1968.
139 R. C. Atkinson. Information delay Jn human learning. December 11,1968.

140 R. C. Atkinson, J. E. Holmgren, and J. F. Jude. Processing time as influenced by the nudes of elements In the visual display.

Morch14, 1969.
141 P. Suppes, E. F. Loftus, and M. Javan. Problem-solving on a computembased tsletypeu March 25,1969.
142 P. Suppes and Mona Morningstar. Evaluation of three computer-assisted instruction programs. May 2,1969.

143 P. Suppes. On the problems of using mathematics In the development of the social sciences. May 12,1969.

144 Z. Domotor. Probabilistic relational structures and their applications. MayI4, 1969.
145 R. C. Atkinson and T. D. Widcens. Human memory and the concept of reinforcement. May 20, 1969.

146 R. J. Titiev. Some model-theoretic results in measurement theory. May 22,1969.

147 P. Suppes. Measurement: Problems of theory and application. June 12, 1969.

148 ,P, Suppes and C. ihke. Accelerated program in elementary-school mathematics --the fourth year. August 7, 1969.
149 0. Rundus and RiC. Atkinson. Rehearsal In free recalls A procedure for direct observation. August 12, 1969.
150 P. Suppes and S. Feldman. Young children's comprohension of logical connectives. October 15, 1969.

( Continued on back cover )



( Continued from inside back cover )

151 Joaquim H. Laubsch. An Adaptive teaching system for optimal item allocation. November 14, 1969.

152 Roberta L, Klatzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969.

153 John E. Holmgren. Response latency as an indicant of information processing in visual search tasks. March 16, 1970.
154 Patrick Suppes. Probabilistic grammars for natural languages. May 15, 1970.

155 E. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.

156 Kenneth N. Wexler. An automaton analysis of the learning of a nimiature system of Japanese. July 24, 1970.

157 R. C. Atkinson and J.A. Paulson. An approach to the psychology of instruction. August 14, 1970.

158 R.C. Atkinson, J.O. Fletcher, H.C. Chetin, and C. M. Stauffer. Instruction in initial reading under computer control: the Stanford project.
August 13, 1970.

159 Dewey J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970.
160 R.L. Klatzky, J.F. Juola, and R.C. Atkinson. Test stimulus representation and experimental context effects in memory scanning.

161 William A. Rottmayer. A formal theory of perception. November 13, 1970.

162 Elizabeth Jane Fishman Loftus. An analysis of the structural variables that determine problem-solving difficulty on a computer-based teletype.

December 18, 1970.
163 Joseph A. Van Campen. Towards the automatic generation of programmed foreign-language Instructional materials. January 11, 1971.

164 Jamesirie Friend and R.C. Atkinson. Computer-assisted instruction in programming: AID. January 25, 1971.

165 Lawrence James Hubert. A formal model for the perceptual processing of geometric configurations. February 19, 1971.

166 J. F. Juola, I.S. Fischler, C.T. Wood, and R.C. Atkinson. Recognition time for information stored in long-term memory.

167 R.L. Klatzky and R. C. Atkinson. Specialization of the cerebral hemispheres In scanning for information in short-term memory.

168 J.D. Fletcher' nd R. C. Atkinson. An evaluation of the Stanford CAI program in initial reading ( grades K through 3 ). March 12, 1971.
169 James F. Juola and R . C. Atkinson. Memory scanning for words versus categories.

170 Ira S. Fischler and James F. Juola. Effects of repeated tests on recognition time for information in long-term memory.

171 Patrick Suppes. Semantics of context-free fragments of natural languages. March 30, 1971.
172 Jamesine Friend. Instruct coders' manual. May 1, 1971.
173 R.C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19, 1971.
174 Patrick Suppes. Computer-assisted instruction at Stanford. May 19, 1971.
175 D. Jamison, J.D. Fletcher, P. Suppes and R.C.Atkinson. Cost and performance of computer-assisted instruction for compensatory education.

176 Joseph Of fir. Some mathematical models of individual differences in learning and performance. June 28, 1971.
177 Richard C. Atkinson and James F. Juola.' Factors influencing speed and accuracy of word recognition. August 12, 1971.

178 P. Suppes, A. Goldberg, G. Kanz, B. Searle and C. Stauffer. Teacher's handbook for CAI courses. September 1, 1971.

179 Adele Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.

180 Max Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12, 1971.

181 Patrick Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.

182 Georg Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.
183 James Michael Moloney. An Investigation of college student performance on a logic curriculum Ina computer-assisted instruction setting.

January 28, 1972.

184 J.E. Friend, J.D. Fletcher and R.C. Atkinson. Student performance in computer-assisted instruction in programming. May 10, 1972.

185 Robert Lawrence Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.

186 Adele Goldberg and Patrick Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1 97 2.


